United States Patent

US009110792B1

(12) 10) Patent No.: US 9,110,792 B1
Douglis et al. 45) Date of Patent: Aug. 18, 2015
(54) SYSTEM AND METHOD FOR CACHE 2005/0044331 Al 2/2005 Simms
REPLACEMENT USING BLOOM FILTER 38?3;8552233 :i Sgg?g g_rlykat |
11€s €t al.
LOOKAHEAD APPROACH 2011/0119426 Al* 52011 Boyleetal. ...ccccceevveneeenn. 711/3
. . . . 2011/0276744 Al* 112011 Sengupta et al. ... 711/103
(75) Inventors: Frederick Douglis, Basking Ridge, NJ 2011/0307447 Al* 12/2011 Sabaaet al. 707/637
(US); Windsor W. Hsu, San Jose, CA 2011/0307664 Al 12/2011 Paveretal.
(US); Hangwei Qian, Cleveland, OH 2012/0221802 Al 82012 Huang)
(US) 2013/0036277 Al* 2/2013 Szczepkowskietal. ... 711/159
2013/0117497 Al 5/2013 Cui et al.
. . . 2013/0173853 Al* 7/2013 Ungureanuetal. 711/103
(73) Assignee: EMC Corporation, Hopkinton, MA 2013/0326154 Al* 12/2013 Haswell .. 711/141
(as) 2013/0326156 Al* 12/2013 Cuietal.ccccouernnene 711/144
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Belady, L. A., “A study of replacement algorithms for a virtual-
U.S.C. 154(b) by 416 days. storage computer,” IBM Systems Journal, vol. 5, No. 2, 1966, pp.
78-101.
(21) Appl. No.: 13/460,722 Bloom, Burton H., “Space/Time Trade-offs in Hash Coding with
Allowable Errors,” Communications of the ACM, vol. 13, No. 7, Jul.
(22) Filed: Apr. 30, 2012 1970, pp. 422-426.
(Continued)
Related U.S. Application Data
(60) Provisional application No. 61/609,578, filed on Mar. Primary Examiner — Charles Rones
12, 2012. Assistant Examiner — Ryan Dare
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
(51) Int.CL Zafman LLP
GO6F 12/02 (2006.01)
(52) US.CL (57) ABSTRACT
CPC oot GOGF 12/0269 (2013.01); G06F2{)21/3020§6 Data objects of a file are cached in a cache memory of a
. . . (01) storage system, where the data objects of the file are accessed
(58) Field of Classification Searc.h) sequentially via access windows in a chain. It is estimated
CPC . GOGF 12/0253; GOGF 12/0269; GOGF whether a next access of a data object of the file likely occurs
o . 12/0276 in which of the access windows using respective bloom filters
See application file for complete search history. associated with the access windows. In response to a request
(56) References Cited for cache space reclamation, a data object is evicted from the

U.S. PATENT DOCUMENTS

7,240,143 Bl 7/2007 Scheffler et al.
8,831,003 B2* 9/2014 Guoetal.ccceevnee. 370/392

100

Client
m

Client
102

cache memory that will be likely accessed in a farthest access
window in the chain from a current access window based on
the estimation.

24 Claims, 17 Drawing Sheets

Access Manager Cache
16
Access Predictor Backup Engine

Metadata Metadata
110 m

Data Objects Data Objects
3
Storage Unit | Sor9e Storage Unit

System
108 104 109

US 9,110,792 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Cao, Pei et al., “A Study of Integrated Prefetching and Caching
Strategies,” In Proceedings of the 1995 ACM SIGMETRICS joint
international conference on Measurement and modeling of computer
systems (1995), pp. 188-197.

Lillibridge, Mark et al., “Sparse Indexing: Large Scale, Inline
Deduplication Using Sampling and Locality,” USENIX Association,
7% USENIX Conference on File and Storage Technologies (FAST
’09), San Francisco, California, USA Feb. 24-27, 2009, pp. 111-123.
Nam, Youngjin et al., “Chunk Fragmentation Level: An Effective
Indicator for Rad Performance Degradation in Deduplication Stor-
age,” IEEE International Symposium of Advances on High Perfor-
mance Computing and Networking (HPCC/AHPCN), Sep. 2011, 6
pages.

Patterson, R. Hugo et al., “Informed Prefetching and Caching,” Pro-
ceedings of the 15" ACM Symposium on Operating System Prin-
ciples, Copper Mountain Resort, Colorado, USA, Dec. 3-6, 1995, pp.
79-95.

Quinlan, Sean et al., “Venti: a new approach to archival storage,”
USENIX Association, Proceedings of the FAST 2002 Conference on
File and Storage Technologies, Monterey, California, USA, 14 pages.
Tan, Yujuan et al., “SORT: A Similarity-Ownership Based Routing
Scheme to Improve Data Read Performance for Deduplication Clus-
ters,” International Journal of Advancements in Computing Technol-
ogy (IJACT), vol. 3, No. 9, Oct. 2011, pp. 270-277.

Wallace, Grant et al., “Characteristics of Backup Workloads in Pro-
duction Systems,” Proceedings of the 10th USENIX Conference on
File and Storage Technologies (FAST 2012), San Jose, CA, Feb.
2012, 16 pages.

Zhu, Benjamin et al., “Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System,” USENIX Association, Fast *08,
6" USENIX Conference on File and Storage Technologies, San Jose,
California, USA, Feb. 26-29, 2008, pp. 269-282.

Non-Final Office Action, U.S. Appl. No. 13/460,711, dated May 7,
2014, 10 pages.

Non-Final Office Action, U.S. Appl. No. 13/601,885, dated Jun. 30,
2014, 53 pages.

Non-Final Office Action, U.S. Appl. No. 13/601,885, dated Dec. 2,
2014, 26 pages.

* cited by examiner

US 9,110,792 B1

Sheet 1 of 17

Aug. 18, 2015

U.S. Patent

I N
uun ebeioig 36ROl Jun ebeinig
T 41
m__ow.EO Bleq wgom_.po gled
T 01l
BJEPRISN ElEPEIB
ocl /
01
suibug sheioyg uoneddnpag
b o ———_ - |_I |||||||
901 yil
suibuz dnyoeg JojoIpald $$800Y
911 Sl
ayoen labeuepy 55820y

1 "OId

00}

201
Jueld

10}
usio

US 9,110,792 B1

Sheet 2 of 17

Aug. 18, 2015

U.S. Patent

ve 9Old
02 302 02 T2 €0c
¥rdo £rdo zZrdo Lrdo eaIeq
< // « 7 N~ 7\ 7 abeiog
\ /
/Aﬁ N // / \ // \.\ //
VARRN ~ <\ N \ / \ / \
/ NN N/ \ \
/ N N AN N/ \
/ A \ \
/ N />\ AN \ \ \
/ N \
p.S // //// / // \,
__ /
cu¢ / //// AN x AN N
Blepeja / \ A \ \
\\ //f hY / h N > ~ \ \
N \ - A} A Y
— N \ \ N
\\ \\ ®__n_ .\ /r N\ \ [N / ~ ~ /
¢rgo Zrgao s g0 | ¢rgo | vrao | ergo | zrgo | vrao | Lrao
N ! . 9 g ¥ ¢ z l
i}
swi| [e21607 / JaplQ SS90y |eusnbeg 4
JuIod
$S300Y JUBLINYD

US 9,110,792 B1

Sheet 3 0f 17

Aug. 18, 2015

U.S. Patent

052

a¢ 'Old

[
"uonoipaid sy} uo paseq ajl a8y JO
uonod puooas auy Buissasoe Buunp passaooe Apuanbasgns s129qo eyep ay)
10 (Buiyoes Jofpue ‘Buiydyesaid ‘Buinpsyss 6-3) souewuiopad ssa0oe ar0sdw|

(374
8|1 8y} JO uoiod puo9ss e ul pessesoe Apusnbasgns

aq Ajox] [jw uoiiod Jsi1} 8Uy ul $10810 Elep 8Uj JO AUE JaujayM JoIpald

44
!
ay1 J0 s1931Go eyep ay) Jo uonsod Jsiy e Buisn 1sanbal ay) S0IAISS pue SA3L]SY

15¢
“((s)1sureyuod ‘(s)uoiBbal uoissaidwiod ‘syunyo
eiep pajeadnpap “B:a) spslqo eep Aq pejussaldal Bulag aju oy} ‘Wa)sAs
abeiois e woyj (a)u dnyorq “6-a) o)1 B BuISSa09R 10) 158Nb3I B BAI08Y

US 9,110,792 B1

Sheet 4 of 17

Aug. 18, 2015

U.S. Patent

"aUoeD au) ojul abe.ois wolj 193[qo ejep ay) peo

90€ / ON

¢

Old

pu3

€0 \

"(deay xejy sy u “6'8) aumonns
E)ep 2]epIpuED UONDIAS Ue ul 123[qo ejep ay Jo (Jequinu
gouanbaes “68) 1opI0 sousnbas $$800e Jxau ay) arepdn

y0€ son

"(19p10 $$8008
U84IND 8Y) WoJ} Jsayue) “B'8) s|lym e Jo} pessaaoe
840U [|IM 1By 8Yded aU) WoJj 192qo elep e 1oIA]

Go¢ /s

00

"ayoed ay) woyj 12alqo eep ay) Buisn 1senbal ay) a01AIeS
c0€ \ SOA
;3Loea U
oN &y _

10€ \

"800
B1ep e Ul Apusiino s1108lqo B1ep sy Jay)aum sulLIB)ep
‘a|1) e WOl 193¢0 Byep e peal 0] 1sanbal e 0] asuodsal U

US 9,110,792 B1

Sheet 5 0f 17

Aug. 18, 2015

U.S. Patent

V¥ ‘Old

107
(s)10ss8001

— 07 s £ov
o0y (Sjuodey | oy, oe H% 4 m%_mwo
SIUNYD BIed | yorssaidwon 1BIUeD abeilg
2ov
— Alowsy
9Ll 701
81080 101
sulbug
— - uoneandnpag
§190[40 Bleq ayoe) ele

00¥

60%
S3]EPIPUED UONOINT

80y
UOEWIOU] SSI0Y

i
J0)0Ipald SSa00Y

Gl
Jlebeuepy sse20y

US 9,110,792 B1

Sheet 6 of 17

Aug. 18, 2015

U.S. Patent

ay 'Old
leubis
uonoIAg
. o Passanoy Apusiing
__ ayoe) Eleg
I
| I~ N ~~ ~~ =
worl
! i e _ o N~ Nl N e
“ xopu | uogouN4 yseH (Lrd0) d4
| |
— —
I e e = \ 80
! N UONEWIOMT \-g-p :erg0
_ \ 88800y
I I-¢ :¢rdo
I — !
—— 16-¢-1:rao
£y
(desy xep “69)
2IMoNIIG Ble(SJepIPUBY UOHDIAT
— 2214 \
5y (M)
3|14 e Jo Juswbas y - MOPUIA\ SS300Y >
erdao et erdo e irgo | €rdO | ra0 | €rdO | ¢rdo | rdo | 1rdo
N ! L 9 “ 14 € [4 |
-

awi| [eaiboT /18piQ $5800Y [enuanbag

US 9,110,792 B1

Sheet 7 of 17

Aug. 18, 2015

U.S. Patent

oY 'Old
leubis
uonding
o passaaoy Ajjusiing
__ — =™ ayoe) Ble(
I
| N AN TSI AT
| (() 1 2517%
| T 5 w5 | 2D L) ol
“ xepu [uopoungyse [(1r80) d T T T T T T T T
_ |
_ | _____ . 307
| \ UoRBLIO| N:€rao
I \ $5200Y L:1rgo
I 4 9:¢rao
[J 1:¢rao
g:irao
= 21190
(deay xep “69)
2JNPNAS BIEQ SIBPIPUERY UOIIAT
—_— 3% \
s (Mv)
9|l e Jo Juswbas y - MOPUIL SS800Y >
£rao et Zrao e irdo | €rdo | irao | €rdo | ¢rdo | rgo | 1rdo
N ! L 9 g 1% g ¢ |

-t

swi [eaiBo / JepIQ $S800Y [enuanbag

US 9,110,792 B1

Sheet 8 of 17

Aug. 18, 2015

U.S. Patent

009

G 'Old

€08
'JOpIO SS8008

lenuanbas ay) uo paseq s1o8lqo eep payoeo ay) 1SBUOLIE 1SAYLE) SI SS800.
1XaU 9S0UM 103[q0 BIEp B 101A8 ‘Uoneweal 80eds ayoed e 0) asuodsal uj

20%
‘3]l 84} JO EJEpE}OW
Uo paseq $193lqo Blep payord ay) JO JapIo SS800. [BNUANbaS suIlLIgIeQ

108
‘Alenuanbas passadoe Buiaq a|u e 10 $102(qo elep Aowasw ayded e ul 8yde)

US 9,110,792 B1

Sheet 9 of 17

Aug. 18, 2015

U.S. Patent

009

V9 'Old

G090
"108[qo BJEp 8Y) 10} JOpIO/aWI) SS8008
1X8U BUJ UM 8INjonis Blep S)epIpuBd uondiAs au Jo Aius ay o1epdn

¥09
"108(00 BIEP 81 Y)IM PaJEIDOSSE
(deay xew "“6-3) a1nonns e3P S1BPIPUBD UOKDIAS 8U) JO Aljus U 0)
Xapul Ue UIEIGo 03 198(qo e1ep auy 1o Jundiabul Se yons ejepejsw yseH

€09
*UONBULIOJUI SS800B 8U) U0 Paseq 108lqo ejep
8y} Jo (Jsquunu aouanbas “6'8) Jeplo/eLuln SS899. 1XaU B suIIgle(]

200
Jo8lqo
BJEp 8Y} JO (49pI0 2o9uanbas $5a008 *6'8) UORBLIOJUI 8098 SASINSY

700
"PasS800e USa] SBY

(sqy dnyoeq “6a) aji1 & Jo 108[qo e1ep e jey) Bunesipul jeubis e aAlsosy

US 9,110,792 B1

Sheet 10 of 17

Aug. 18, 2015

U.S. Patent

099

49 'Old

¢8oeds ybnoug

ON
v39

€59

@1 19310 B1ep 8y} uo paseq ayoeD ay Woll 193lqo Blep 8yl 1A

i

759
J0alqo ejep e Jo (Ql) Jounuapl
ue uiejqo 01 (deay xew ayy wioj Anus doj e dod “6-9) aimonis
EJEp S)EpIPUBD UONIIAS UB WO S)epipued uonoias doy e Ajuap)

4

169
"ayoed ay) WoJ) a0eds wWiedal 0] 1sanbal e aAI809Y

US 9,110,792 B1

Sheet 11 of 17

Aug. 18, 2015

U.S. Patent

99 Old

pu3

€19
‘(yoroudde

peayey 00| Ja]|ll Woo|q 10 Bulspio-ssa00.
“B6-9) yoeo.idde paziwido ssaoe Ue 9)0AU|

¢l9
"POYISL UOIDIAS 8U2ED Y] PJEPUE]S B 8Y0AU|

épjoysaiy) e mojeg

ON

129
"wioisAs obelo)s ayy Ul uonejuawbely
10 o)kl [[BJaA0 8] Jo Aloisiy 1sed uo paseq apew
s uoneluswbel peal Jo uonaipaid e wiousd

US 9,110,792 B1

Sheet 12 of 17

Aug. 18, 2015

U.S. Patent

90¥ (s)uoiBay vOr | someq
SIUNYD B | | ossaiduion (sheureod | seioig
aor
— Aowapy
911 —
ayoen 201
auibug
o T uoneaydnpaqg
— 8128090 e1eQ ayoed ejeq
107 —> vH
(s)ossa001d o
10}01pald $S800Y
50% 80%
S8jepIpue)) uondIAg uonewJoju| ss8d0y [N
Jabeuepy $8890y
0L 701 107
111 5800y Ja)14 wooig MOPUIAA SS330Y
00

US 9,110,792 B1

Sheet 13 0of 17

Aug. 18, 2015

U.S. Patent

g/ 'Old
— /
861 - 4 /
PaJoIAG aq - i
0} s1302lqo ue uaym e \\\\ DOSSO00E
IIIIIIIIIIIII - s1193(q0 UB uaym
|||||| 097
57 (yuudisbui4“6s)
1817 ebequen EIEPEIOI
99/ GO/ ¥9. €0l 2oL
N Jejji4 Wwood 7 49114 woold g ;)i woold ¢ #3)I4 woold | Jo)I4 Woolg
977 (73 vl eIl ¢l
N 18I $s820y ¥ 18I SS800Y £ 18I $S800Y Z 1S ssa00y | 1SI7 SS90y
= = — == 473
961 GGl ¥l §S2 (v enpoenueLmD “50)
N MV ¥ MV £ MY MY
I MV
8109lq0 $108[90 8109[q0 s108lq0 819890
a4

swi| [eo1B0T / 18pIQ SSEI0Y [enuanbaeg

US 9,110,792 B1

Sheet 14 of 17

Aug. 18, 2015

U.S. Patent

008

8 'Old

€08
"UOIBWIISS Y} UO PASB(MOPUIM SS8I0B JUSLIND B WO} UIeyd auy)
Ul MOPUIM SS820B 1SByle} B Ul passadoe aq Ay (1M Jey) Alowaw syoed sy}
woJ} 192[qo ejep e 101A8 ‘uonewedal a0eds ayoed 1o 1senbal e 0} asuodsal uj

208
"MOPUIM
SS900B 8Y) UM PaJeIo0SSE Ja)|ll WOoOjg B Buisn Smopuim SSsooe auy Jo
U0 UI 1000 AjY1| 8]l 8Y) 10 1031G0 BIEp B JO SS800. 1X8U B JayjsyMm S)BwiST

108
"SMOPUIM S$S3998 JO UIRYD B BIA Ajlenuanbas passadoe aq 0) aju ay) Jo s3oalqo
elep oy ‘washs abeio)s e Jo Aiowsw ayded e ul ajii e Jo $198(qo ejep ayoe)

US 9,110,792 B1

Sheet 15 0of 17

Aug. 18, 2015

U.S. Patent

V6 "Old

pu3

"SMOPUIM SSS20E 21} JO AUB Ul passadde aq Jou [im 198(qo
EJBp U} 18y jealpul 0} 1930 ejep ayi yiim Js1) abeqieb sy sjepdn

"Passaae 8q Ajoy [[Im 108(G0 Bl1ep ay)
JBU) S)e0Ipul 0} MOPUIM 8L JO)81 ssaooe Buipuodsauoo auy ajepdn

G06 \

£ SMOPUIM SS8I8 310}
SBA

706

£passedoe Aoy

906 /

006

SaA
€06

206 \

“MmopuIM BAIDadSal 8y Ul Passadade Auanbasqns aq [Im
108{Go ejep sy pooy(ey)| sulLLISIaP 0} BIEPEJBL 8y} UO (1) 483y
woolq Buipuodseiioo ay eyoaul ‘mopuim ssa20e Jusnbasqns e 1o

¢Ppessadoe >_®v_ N

SO

Sm\

"poupaLL pesyexoo| Buuapio-ssaade Buisn
MOPUIM $SBIJR JUBLINY 8y} uipim uleBe passaade aq [Im 108lGo ejep
BU) JOUIBYM BUILLIBIEP ‘MOPUIM SSEITE JUBLIND B UILJIM PISSIIIR
Buiaq (s dnyoeq “6-8) i & Jo 198[q0 EIEP B 0) 8sUdsal U]

US 9,110,792 B1

Sheet 16 of 17

Aug. 18, 2015

U.S. Patent

g6 'Old

U) 0] 1080Sal)IM MOPUIM SSEIIE 1S3ULIE] 1X8U B 0] SAO[

"MOPUIM SS8098 JU8LINd

pu3

-

956 \

"MOpUIM SS8208 JUBIINg
aU) Ul poLpaw UonoiAa ayoeo Buuiapio-ssaooe ay) axoAl|

1567

£ SMOPUIM SS90 2JO[

SaA

¢99eds ybnoug
SOA

€56 /|

"MOPUIM $S8008
JSaUM.Y U} JO ISI| SS008 UE Ul Pa)s]| (S)oslqo eep 1A

056

¢89eds ybnoug
SOA
256

166 \

"ayoed aupy wolj 1si) abeqieb sy ul pasy (s)oslqo erep
a1 101A8 ‘B2 Jo 20rdS WIE|Da) 0] 1sanbal e 0) asuodsal U

US 9,110,792 B1

Sheet 17 of 17

Aug. 18, 2015

U.S. Patent

. 0101
0l "OId (shwun sbeio)s
FAD
2oel9U| 1N 8brIoIS
0001 5007
auibug

abri0)g uoneoydnpag

Jojeuiwg e1eondng

!

¥00%
Igjuswbag

9

8001
[01)U07) WalSAS 3l

2001

20B/I9)U| 801AIBS 3]14

+

v

¥101
(uonediddy dnyoeg “6-a)

(shuaid

US 9,110,792 B1

1
SYSTEM AND METHOD FOR CACHE
REPLACEMENT USING BLOOM FILTER
LOOKAHEAD APPROACH

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 61/609,578, filed Mar. 12, 2012. This
application is also related to U.S. patent application Ser. No.
13/460,728, entitled “System and Method for Improving Per-
formance of Backup Storage System with Future Access Pre-
diction,” filed Apr. 30, 2012, and U.S. patent application Ser.
No. 13/460,711, entitled “System and Method for Cache
Replacement using Access-Ordering Lookahead Approach,”
filed Apr. 30, 2012. The disclosure of the above applications
is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

Embodiments of the present invention relate generally to
data storage systems. More particularly, embodiments of the
invention relate to cache space reclamation using a bloom
filter lookahead approach.

BACKGROUND

The performance of a computer system largely depends on
the performance of its slowest component. For example,
retrieving data from a non-volatile storage device, such as one
or more hard disk drives, to a high-speed memory, is limited
by the speed of the disk drives. Various techniques are used to
improve performance. One such technique is known as “cach-
ing,” in which data retrieved from disk are retained in the
high-speed memory in order to improve the access time for
that data on subsequent accesses. Another technique is known
as “prefetching,” in which data are retrieved from disk in
advance of an explicit request for the data, in order to have the
data available in high-speed memory at the time the request is
made. Still another technique is the reordering of input from
and output to the disk, when feasible. For example, a disk with
a queue of several blocks to write might reorder the write
operations to minimize the latency of repositioning a disk
head between writes.

During a sequential read operation, an application pro-
gram, such as a restore program, will process numerous data
records stored at contiguous locations in the storage device. It
is desirable during such sequential read operations to prefetch
the sequential data into cache in anticipation of the requests
from the application program. A sequential caching algo-
rithm detects when a device is requesting data as part of a
sequential access operation. Upon making such detection, the
storage controller or server may begin prefetching sequential
data records following the last requested data record into a
cache in anticipation of future sequential accesses. The
cached records may then be returned to the application per-
forming the sequential data operations at speeds substantially
faster than retrieving the records from a non-volatile storage
device.

The field of deduplicating storage systems adds a layer of
complexity to the problem of improving read performance. In
a deduplicating storage system, unique pieces of data known
as “chunks” are identified via hashes known as “fingerprints.”
To read back a file, the system loads a list of fingerprints for
the file, and then reads the chunks corresponding to the fin-
gerprints. One method for finding the chunks on disk is to
have an index that associates a fingerprint with a container,
which is an aggregate of many chunks. These chunks can be

10

15

20

25

30

35

40

45

50

55

60

65

2

concatenated together and compressed to save disk space
beyond the benefits that deduplication provides. Once iden-
tifying the correct container, the file system can load the
metadata for the container, which lists all the fingerprints of
the chunks stored in the container, along with their locations.
To read a particular chunk, the system reads a read unit (RU)
such as a compression region (CR) containing the chunk
desired. At this point other chunks in that RU are also loaded
into memory, because the RU is the unit of an input/output
(I0) operation when reading from the disk. In contrast, when
writing to the disk, a full container is written in one 10
operation.

Once read into memory, the RU can be retained in a cache
to improve the performance of later accesses to chunks in the
RU. The system reserves some amount of memory as a cache
for RUs, and whenever a new one is loaded into memory,
another RU must be removed from the cache when the cache
space is insufficient. A typical paradigm is to cache data in a
“least recently used” (LRU) fashion, using past accesses as a
prediction of future behavior. Often such a prediction is inac-
curate and unreliable, particularly, for a backup storage sys-
tem. LRU works well on data with good locality (e.g., stored
in nearby locations); it does not work as well with fragmented
storage locations such as would be found in a deduplicated
storage system. In a backup storage system, especially a
deduplication backup storage, files are chunked and chunks
are stored across multiple different storage locations or con-
tainers. Further, after the incremental backup and/or garbage
collection, the chunks of the files are dispersed within the
storage system and the locality tends to worsen.

When reading back a deduplicated file, two things are
different from “traditional” file systems that have used LRU
caching effectively for many decades. Firstly, deduplicated
data can be fragmented among many different places on a
disk. In a standard file system, when writing a file, the entire
file is typically written contiguously in the file system, and a
single large read is sufficient to provide the file to a reader. In
a deduplicating system, a file may consist of references to
many different containers because versions of the file have
been created over time. Secondly, restoring backup data may
result in an extremely large read request, which provides
information in advance about all the fingerprints that will be
needed over an extended period of input/output (IO) transac-
tions. The quantity of “look-ahead” information available
may be substantially greater than in a traditional system.
Given this information, one way to use advance knowledge of
the 10s that will be required is to prefetch data: bring data
from disk into memory before the point where the data will
actually be needed. But due to the fragmentation caused by
deduplication, simply retrieving the next data that will be
accessed that is not already cached does not take full advan-
tage of the access information.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example and not limitation in the figures of the accompanying
drawings in which like references indicate similar elements.

FIG. 1 is a block diagram illustrating a storage system
according to one embodiment of the invention.

FIG. 2A is a block diagram illustrating a process for
retrieving a file from storage according to one embodiment of
the invention.

FIG. 2B is a flow diagram illustrating a method for effi-
ciently providing file services in a storage system according
to one embodiment of the invention.

US 9,110,792 B1

3

FIG. 3 is aflow diagram illustrating a method for efficiently
providing file services in a storage system according to
another embodiment of the invention.

FIGS. 4A-4C are block diagrams illustrating a storage
system using an efficient cache replacement method accord-
ing to certain embodiments.

FIG. 5is a flow diagram illustrating a method for accessing
data objects according to one embodiment of the invention.

FIG. 6A is a flow diagram illustrating a method for per-
forming access prediction according to one embodiment of
the invention.

FIG. 6B is a flow diagram illustrating a method for cache
space reclamation according to one embodiment.

FIG. 6C is a flow diagram illustrating a method for cache
space reclamation according to another embodiment.

FIGS. 7A and 7B are block diagrams illustrating a backup
storage system using an efficient cache replacement method
according to certain embodiments.

FIG. 8 is a flow diagram illustrating a method for accessing
data objects according to another embodiment of the inven-
tion.

FIG. 9A is a flow diagram illustrating a bloom filter loo-
kahead method according to one embodiment of the inven-
tion.

FIG. 9B is a flow diagram illustrating a bloom filter looka-
head method according to another embodiment of the inven-
tion.

FIG. 10 is a block diagram illustrating a deduplicated stor-
age system according to one embodiment of the invention.

DETAILED DESCRIPTION

Various embodiments and aspects of the inventions will be
described with reference to details discussed below, and the
accompanying drawings will illustrate the various embodi-
ments. The following description and drawings are illustra-
tive ofthe invention and are not to be construed as limiting the
invention. Numerous specific details are described to provide
a thorough understanding of various embodiments of the
present invention. However, in certain instances, well-known
or conventional details are not described in order to provide a
concise discussion of embodiments of the present inventions.

Reference in the specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or
characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification do not necessarily all refer to
the same embodiment.

According to some embodiments, when a file such as a
backup file is retrieved and accessed from a backup storage
system, a prediction is performed based on metadata (e.g.,
fingerprints) of chunks of the file to predict whether a chunk
occurred at a first portion or location of the file will be sub-
sequently accessed again at a second portion or location of the
file. Based on the prediction, certain actions may be per-
formed to improve subsequent access of the chunk, for
example, with better prefetching, caching, and/or scheduling.
For example, a chunk that is likely to be accessed again
subsequently within the same file may be prefetched and/or
cached in a cache memory prior to the actual access of the
chunk, such that subsequent access of the same chunk later on
can be improved. Alternatively, based on the metadata, a
related file (e.g., incremental backup file) may be identified
and certain actions may also be performed on the related file
to improve subsequent access of the related file.

25

30

40

45

50

4

In addition, an efficient cache replacement (also referred to
as cache eviction) scheme is employed based on the predic-
tion to further improve data access performance. In one
embodiment, the system evicts a data object from the cache
that would likely be accessed within the same file farthest in
the future based on the prediction. That is, a data object that
will not likely be accessed again or for a while within the same
file is considered as a top candidate for eviction. A data object
may represent a chunk of a file. In a deduplicating storage
system, such as a Data Domain deduplication storage system,
adata object may represent a data chunk, a CR containing one
ormore data chunks, a container containing one or more CRs,
or a combination thereof. Such an efficient eviction scheme
can be implemented using various lookahead prediction
methods.

In one embodiment, the system looks ahead and parses
metadata (e.g., fingerprints) of data objects within an access
window (also referred to as a lookahead window) that covers
a certain amount of chunks of the file to be accessed, where
the access window is a sliding access window to read a certain
amount of metadata of chunks of a file into the memory at a
time (since the file may be a backup file with a large size). The
logical access order (also referred to as logical time stamps or
access sequence numbers) of the chunks within the access
window is obtained and retained in the memory based on the
associated metadata. When a data object is accessed and
stored in a cache, the next access sequence order of the data
object is recorded in a data structure, such as a max heap data
structure, as an eviction candidate data structure. The data
structure is to maintain a reference of a data object with
largest or latest next access order with respect to a current
access order or time (e.g., farthest from the current access
point). During a cache eviction process, a data object from the
cache eviction candidate data structure with the largest access
order will be identified from the data structure and evicted
from the cache. When a certain amount (e.g., a predetermined
threshold) of metadata of data objects of the current window
has been processed, the process will slide onto a next access
window (e.g., sliding the window to subsequent data objects
in the file). This approach is referred to as an access-ordering
lookahead approach.

According to another embodiment, to reduce memory
usage, an access window is divided into multiple sub-win-
dows (SWs) in a chain. The system looks ahead at the meta-
data of data objects in multiple sub-windows. When a data
object is accessed at a current sub-window, an estimate is
performed to approximately predict whether and when the
next time the data object will likely be accessed during a
subsequent sub-window. If it is determined that the data
object is unlikely to be accessed in any of the subsequent
sub-windows, the data object is indicated in a garbage list.
The system walks through the sub-windows in an ascending
or forward order, from the nearest sub-window to the farthest
sub-window with respect to the current or active sub-window
(e.g., the first overall sub-window amongst them). The infor-
mation concerning whether and when the next time a particu-
lar data object is likely to be accessed in a subsequent sub-
window is maintained. In one embodiment, metadata such as
the fingerprint of the data object is input into a bloom filter of
each sub-window. The output of the bloom filter is utilized to
indicate whether the data object is likely to be accessed in the
corresponding sub-window. This approach is referred to as a
bloom filter lookahead approach. In one embodiment, each
sub-window is associated with a bloom filter, which may be
created dynamically or statically.

In one embodiment, during the cache space reclamation
process, the system first examines the garbage list to identify

US 9,110,792 B1

5

any data object listed therein (e.g., data objects that are not
referenced across all the sub-windows) and to evict at least
one data object from the garbage list. If more cache space is
needed and if there is no data object listed in the garbage list,
the system walks through the sub-windows in a descending or
backward order, from the farthest sub-window to the nearest
sub-window with respect to a current sub-window, until the
enough cache space has been reclaimed. If none of the sub-
windows other than the current sub-window includes any data
object for eviction, according to one embodiment, the access-
ordering lookahead approach is utilized to handle the cache
eviction process within the current sub-window.

FIG. 1 is a block diagram illustrating a storage system
according to one embodiment of the invention. Referring to
FIG. 1, system 100 includes, but is not limited to, one or more
client systems 101-102 communicatively coupled to storage
system 104 over network 103. Clients 101-102 may be any
type of clients such as a server, a personal computer (e.g.,
desktops, laptops, and tablets), a “thin” client, a personal
digital assistant (PDA), a Web enabled appliance, a gaming
device, a media player, or a mobile phone (e.g., Smartphone),
etc. Network 103 may be any type of networks such as a local
area network (LAN), a wide area network (WAN) such as
Internet, a corporate intranet, a metropolitan area network
(MAN), a storage area network (SAN), a bus, or a combina-
tion thereof, wired and/or wireless.

Storage system 104 may include any type of server or
cluster of servers. For example, storage system 104 may be a
storage server used for any of various different purposes, such
as to provide multiple users with access to shared data and/or
to back up mission critical data. Storage system 104 may be,
for example, a file server (e.g., an appliance used to provide
network attached storage (NAS) capability), a block-based
storage server (e.g., used to provide SAN capability), a uni-
fied storage device (e.g., one which combines NAS and SAN
capabilities), a nearline storage device, a direct attached stor-
age (DAS) device, a tape backup device, or essentially any
other type of data storage device. Storage system 104 may
have a distributed architecture, or all of its components may
be integrated into a single unit. Storage system 104 may be
implemented as part of an archive and/or backup system such
as a deduplicating storage system available from EMC® Cor-
poration of Hopkinton, Mass.

In one embodiment, storage system 104 includes, but is not
limited to, backup engine 106, deduplication storage engine
107, and one or more storage units 108-109 communicatively
coupled to each other. Storage units 108-109 may be imple-
mented locally (e.g., single node operating environment) or
remotely (e.g., multi-node operating environment) via inter-
connect 120, which may be a bus and/or a network. In one
embodiment, one of the storage units 108-109 operates as an
active storage to receive and store external or fresh user data,
while the other storage unit operates as a target storage unit to
periodically archive data from the active storage unit accord-
ing to an archiving policy or scheme. Storage units 108-109
may be, for example, conventional magnetic disks, optical
disks such as CD-ROM or DVD based storage, magnetic tape
storage, magneto-optical (MO) storage media, solid state
disks, flash memory based devices, or any other type of non-
volatile storage devices suitable for storing large volumes of
data. Storage units 108-109 may also be combinations of such
devices. In the case of disk storage media, the storage units
108-109 may be organized into one or more volumes of
Redundant Array of Inexpensive Disks (RAID).

In response to a data file to be stored in storage units
108-109, optional deduplication storage engine 107 is con-
figured to segment the data file into multiple chunks accord-

20

25

40

45

50

55

6

ing to a variety of segmentation policies or rules. Deduplica-
tion storage engine 107 may choose not to store a chunk in a
storage unit if the chunk has been previously stored in the
storage unit. In the event that deduplication storage engine
107 chooses not to store the chunk in the storage unit, it stores
metadata enabling the reconstruction of the file using the
previously stored chunk. As a result, chunks of data files are
stored in a deduplicated manner, either within each of storage
units 108-109 or across at least some of storage units 108-
109. Data stored in the storage units may be stored in a
compressed form (e.g., lossless compression: Huffman cod-
ing, Lempel-Ziv Welch coding; delta encoding: a reference to
a chunk plus a difference; etc.). In one embodiment, different
storage units may use different compression methods (e.g.,
main or active storage unit from other storage units, one
storage unit from another storage unit, etc.).

The metadata, such as metadata 110-111, may be stored in
at least some of storage units 108-109, such that files can be
accessed independent of another storage unit. Metadata of
each storage unit includes enough information to provide
access to the files it contains. In one embodiment, metadata
may include fingerprints contained within data objects 112-
113, where a data object may represent a data chunk, a CR of
data chunks, or a container of one or more CRs. Fingerprints
are mapped to a particular data object via metadata 110-111,
enabling the system to identify the location of the data object
containing a chunk represented by a particular fingerprint.
When an active storage unit fails, metadata contained in
another storage unit may be utilized to recover the active
storage unit. When one storage unit is unavailable (e.g., the
storage unit has failed, or is being upgraded, etc.), the system
remains up to provide access to any file not stored in the failed
storage unit. When a file is deleted, the metadata associated
with the files in the system is updated to reflect that the file has
been deleted.

In one embodiment, the metadata information includes a
file name, a storage unit where the chunks associated with the
file name are stored, reconstruction information for the file
using the chunks, and any other appropriate metadata infor-
mation. In one embodiment, a copy of the metadata is stored
on a storage unit for files stored on a storage unit so that files
that are stored on the storage unit can be accessed using only
the information stored on the storage unit. In one embodi-
ment, a main set of metadata information can be recon-
structed by using information of other storage units associ-
ated with the storage system in the event that the main
metadata is lost, corrupted, damaged, etc. Metadata for a
storage unit can be reconstructed using metadata information
stored on a main storage unit or other storage unit (e.g.,
replica storage unit). Metadata information further includes
index information (e.g., location information for chunks in
storage units, identifying specific data objects).

In one embodiment, the storage system as shown in FIG. 1
may be used as a tier of storage in a storage hierarchy that
comprises other tiers of storage. One or more tiers of storage
in this hierarchy may utilize different kinds of storage devices
and/or may be optimized for different characteristics such as
random update performance. Files are periodically moved
among the tiers based on data management policies to achieve
a cost-effective match to the current storage requirements of
the files. For example, a file may initially be stored in a tier of
storage that offers high performance for reads and writes. As
the file ages, it may be moved into a tier of storage according
to one embodiment of the invention. In various embodiments,
tiers include different storage technologies (e.g., tape, hard
drives, semiconductor-based memories, optical drives, etc.),
different locations (e.g., local computer storage, local net-

US 9,110,792 B1

7

work storage, remote network storage, distributed storage,
cloud storage, archive storage, vault storage, etc.), or any
other appropriate storage for a tiered data storage system.

Referring back to FIG. 1, according to one embodiment,
backup engine 106 includes an access predictor 114, access
manager 115, and cache 116. Access manager 115 is to pro-
vide file services to a variety of clients, such as a backup/
restore application, to backup files stored in storage units
108-109, in this example, represented as data objects 112-113
that may be optionally deduplicated by deduplication storage
engine 107. Typically, when a request is received to access a
file such as a backup file, data objects of the requested file are
loaded into a memory of storage system 104. Since the file
may be large, only a portion of data objects of the file is loaded
or cached in the memory at a time for accessing. In one
embodiment, in response to a request to read a portion of a file
from storage units 108-109, future requests to the storage
units 108-109 are predicted based on the received request
and/or metadata of the file. Subsequent access of the file is
optimized based on the prediction, for example, including
managing a data cache, prefetching data, or scheduling the
order in which requests are handled. The prediction may be
performed based on types of a file, sequential access of the
file, responsive to a command from a client application such
as backup application or antivirus program, etc.

When a data chunk is being accessed, the data object con-
taining the chunk is loaded into cache 116 and the request is
then serviced using the data object from the cache. Cache 116
may be allocated as a designated memory region of the sys-
tem memory, which is typically limited in size. When a data
object is requested for access, access manager 115 inspects
cache 116 to determine whether the requested data objectis in
cache 116. If so (e.g., cache hit), the data object from cache
116 is used to service the request. If the requested data object
is not in cache 116 (e.g., cache miss), access manager 115 is
to load the requested data object from storages 118-119 into
cache 116. If cache 116 is full, a data object currently stored
in cache 116 has to be evicted from cache 116 to make room
for the data object currently requested. A data object may
represent a data chunk, a CR of multiple data chunks, or a
container of multiple CRs. According to one embodiment,
multiple data objects, such as a CR or a container, may be read
into the memory from storage units 108-109. However, only
the related individual data chunks may be cached in cache
116.

According to one embodiment, when a file such as a
backup file is retrieved and accessed from a backup storage
system, access predictor 114 is to predict based on metadata
(e.g., fingerprints) of data objects of the file whether a data
object occurred at a first portion or location of the file is likely
to be subsequently accessed again at a second portion or
location of the file. Based on the prediction, certain actions
may be performed to improve subsequent access of the data
object, for example, with better prefetching, caching, and/or
scheduling. In one embodiment, a data object that is likely to
be accessed again subsequently within the same file may be
cached in cache 116 such that subsequent access of the same
data object later on can be improved. According to an alter-
native embodiment, based on the metadata, a related file may
beidentified and certain actions may also be performed on the
related file to improve subsequent access of the related file.

In addition, an efficient cache replacement scheme is
employed based on the prediction to further improve data
access performance. In one embodiment, the access manager
115 is to evict a data object from cache 116 that would be
unlikely to be accessed again or likely to be accessed in the
same file farthest in the future based on the prediction. That s,

10

15

20

25

30

35

40

45

50

55

60

65

8

a data object that is unlikely to be accessed again within the
same file (or a stream of one or more related files) is consid-
ered as a top candidate for eviction. If every object currently
in the cache is likely to be accessed again within the same file
or a related file, no cache replacement algorithm can achieve
a better cache hit rate than one that evicts the object that will
be accessed farthest in the future. In practice, any object that
will not be reaccessed for “a while” is an equally good can-
didate for eviction from the cache as long as there is no other
object that, if evicted, can result in a better cache hit rate.
Herewith we use the term “a while” to indicate a long enough
interval that retaining an object in the cache in preference to
another object will result in a lower cache hit rate, that is, it
represents an equivalence class of all objects that will be
evicted from the cache by the optimal cache replacement
policy, prior to being reaccessed. An efficient cache eviction
scheme with an approximately optimal cache hit rate would
evict any object that is unlikely to be accessed again, and in
the absence of any available objects that will not be reac-
cessed, would evict an object that will not be reaccessed for “a
while”. Such an efficient eviction scheme can be imple-
mented using various lookahead prediction methods.

FIG. 2A is a block diagram illustrating a process for
retrieving a file from storage according to one embodiment of
the invention. Referring to FIG. 2A, file 201 (e.g., a backup
file) includes many data objects to be sequentially accessed.
For example, a media file such as an audio or video file is
typically read sequentially. Alternatively, a client application
such as a backup application or antivirus program may
instruct the storage system to read the data objects in
sequence. In this example, the storage system as shown is a
deduplicated storage system, where only the deduplicated
data objects 204-207 are stored in storage device 203, while
file 201 contains many data objects that are formed from the
deduplicated data objects 204-207. Any one of deduplicated
data objects 204-207 may occur in multiple locations within
file 201, which may be recorded via metadata 202. In this
example, for the purpose of illustration, there are four dedu-
plicated data objects: OBJ1, OBJ2, OBJ3, and OBJ4. Often,
more deduplicated data objects are used to construct a file.

According to one embodiment, an access predictor, such as
access predictor 114 of FIG. 1, is to predict the access timing
of'each of objects 204-207 based on metadata 202 associated
with file 201. Based on the predicted access timing, an access
manager, such as access manager 115 of FIG. 1, is to perform
certain actions that will improve the subsequent access of the
objects 204-207. In one embodiment, based on the predicted
access timing of a particular data object, the access manager
can prefetch the data object from storage device 203 into a
memory prior to the access time of the corresponding data
object. For example, given the current access order is at
access order or sequence order of 2 as shown in FIG. 2A, it is
predicted that OBJ4 and OBJ2 will be accessed at the access
orders 2 and 3 based on metadata 202. Even though OBJ4 is
the next object to be referenced, it is more efficient to read
OBJ2 along with OBJ1 before reading OBJ4, and then to read
OBIJ3 along with OBJ4 in anticipation of its use at time 4. In
such a situation, the access manager can prefetch OBJ2,
OBJ4, and OBJ3 from storage device 203 into the cache
memory, such that at the access order 2-4, OBJ4, OBJ2, and
OBIJ3 are available from the memory without having to
retrieve the same from storage device 203 at that time.

According to another embodiment, the access manager
may maintain a particular data object in the cache memory if
the access predictor predicts that the data object will be
accessed again soon. For example, it is assumed that given the
current access order at access order 4, OBJ4 and OBJ3 may be

US 9,110,792 B1

9

maintained in the cache memory in response to a cache space
reclamation request, since they will be accessed in the next
access orders 5-6. LRU caching would be similarly effective
at keeping OBJ4 and OBJ3 in memory because they would
have been accessed very recently. But looking ahead, OBJ2 is
referenced significantly later (at access order 1) and OBJ3 is
referenced significantly later than that (at access order N).
According to one embodiment, ifthere is aneed to evicta data
object from the cache memory, a data object that will not be
accessed for a while may be considered as a top eviction
candidate. In this example, when OBIJ1 is accessed at access
order 8, OBJ2 is the least recently used of the four objects, and
with LRU caching it might be removed from the cache to
make room for OBJ1. But according to one embodiment, by
predicting that OBJ2 will be used at access order i before
OBI3 or OBJ4 is rereferenced, OBJI3 or OBJ4 would be a
preferred candidate for eviction. Since OBJ3 is accessed at
access order N and OBJ4 is not accessed again, if there is a
need to evict a data object from the cache memory, OBJ4 will
be evicted first.

FIG. 2B is a flow diagram illustrating a method for effi-
ciently providing file services in a storage system according
to one embodiment of the invention. Method 250 may be
performed by backup engine 106 of FIG. 1, which may be
implemented as processing logic in software, hardware, or a
combination of both. Note that throughout this application, a
backup storage system is utilized as an example of a storage
system. The techniques described throughout this application
can also be applied to other types of storage systems. For
example, backup engine 106 can be implemented as any type
of file servers. Referring to FIG. 2B, at block 251, a request
for accessing a file of a storage system is received, where the
file is presented by data objects such as deduplicated data
chunks, where the data chunks may be stored in CRs and the
CRs may be stored in containers. At block 252, a first portion
of'data objects of the file is retrieved to service the request. At
block 253, processing logic predicts whether any of the data
objects in the first portion will likely be accessed subse-
quently in a second portion of the file. If a data object is
predicted to be likely accessed again, the processing logic
further determines or estimates when (e.g., how far from the
current access time slot, or access sequence number or order)
the data object is to be accessed subsequently. At block 254,
the prediction is used to improve access performance of the
data objects subsequently accessed during accessing the sec-
ond portion of the file. For example, the data objects that is
likely accessed again subsequently may be maintained in the
cache, while data objects that would not be accessed for a
while may be evicted from the cache to make room for other
data objects that are currently being accessed.

FIG. 3 is aflow diagram illustrating a method for efficiently
providing file services in a storage system according to
another embodiment of the invention. Method 300 may be
performed by backup engine 106 of FIG. 1, which may be
implemented as processing logic in software, hardware, or a
combination of both. Referring to FIG. 3, at block 301, in
response to a request to read a data object from a file (e.g., a
backup file), processing logic determines whether the data
object is currently in a data cache. The data object may be one
of many data objects (e.g., deduplicated data objects) of a file
being retrieved or restored. In a deduplicated storage system,
a file may contain many deduplicated data objects that may
occur at multiple locations within the file. If the requested
data object is located in the data cache, at block 302, the
request is serviced using the data object from the data cache.
Thereafter, at block 303, the next access time or order (e.g.,
sequence number) of the data object is updated in an eviction

10

15

20

25

30

35

40

45

50

55

60

65

10

candidate data structure, such as a max heap data structure, to
indicate when will be the next time the same data object is to
be accessed within the same file. Such information can be
used subsequently during a cache eviction process to deter-
mine which of the data objects in the cache should be evicted
first, which is not necessarily the LRU ones.

Ifthe requested data object is not in the cache, at block 304,
processing logic determines whether the cache is currently
full. If the cache is not full, at block 306, the requested data
object is loaded from the storage into the cache, and the
request is serviced using the data object from the cache at
block 302 and the next access sequence order of the data
object is updated in the eviction candidate data structure at
block 303. If the cache is full, at block 305, processing logic
evicts a data object from the cache that will not be accessed
for a while to make room for the requested data object loaded
from the storage. In one embodiment, a data object that will
be accessed in a sequence order that is farthest from the
current access sequence order is considered as a top eviction
candidate. Such a data object may be identified based on their
next access sequence number that is stored in the eviction
candidate data structure which is updated at block 303. Once
there is room in the cache after the eviction, at block 306, the
requested data object is loaded from the storage into the
cache. Thereafter, at block 302, the request is serviced from
the cache and at block 303, the next access sequence order of
the data object is updated in the eviction candidate data struc-
ture.

Various cache replacement or eviction methods can be
employed to efficiently manage the cache for a storage sys-
tem, particularly, a deduplication storage system. According
to one embodiment, a cache replacement method can be
implemented using an access-ordering lookahead approach, a
bloom filter lookahead approach, or a combination thereof,
which will be described in details further below.

FIG. 4A is a block diagram illustrating a backup storage
system using an efficient cache replacement method accord-
ing to one embodiment. System 400 may be implemented as
part of storage system 104 of FIG. 1. Referring to FIG. 4A,
access manager 115 and access predictor 114 are executed in
memory 402 by one or more processors Or processor cores
401. In addition, cache 116 is allocated from memory 402
specifically for managing access of data chunks 406, CRs
405, and containers 404 stored in storage unit 403. Cache 116
includes data cache 407, access information 408, and eviction
candidates 409. Data cache 407 is to cache data objects 410
loaded from storage unit 403, where any of data objects 410
may, in this example, represent data chunks 406, a CR of one
or more data chunks, a container of one or more CRs, or a
combination thereof of a deduplication storage system. Note
that throughout this application, a deduplication storage sys-
tem is described as an example of a storage system; however,
other types of storage systems can also be applied.

According to one embodiment, in response to a request to
retrieve a file, access manager 115 is to load certain amount of
data objects of the file into memory 402 and to store the data
objects in data cache 407 as data objects 410 if data cache 407
has enough space. Note that the file may be a backup file with
a large size. Typically, the access manager is to read a fixed
number of data objects at a time dependent upon the size of
the cache memory and use the cached data objects to service
the file service requests. In one embodiment, in determining
the access order or patterns of the data objects, metadata (e.g.,
fingerprints) of the data objects representing the file is loaded
into the memory and analyzed. Since the file may be a large
file and metadata of the file may also be relatively large, only
a portion of the metadata representing a sequence of data

US 9,110,792 B1

11

objects to be accessed at a fixed period of time is loaded,
where the fixed period of time is referred to as an access
window. That is, access predictor 114 and access manager
115 process a fixed amount of metadata at a time limited by
the size of an access window. Once a certain amount of the
data objects of an access window has been processed, access
manager 115 isto slide the access window to read a next batch
of metadata of data objects of the file from storage 403.

According to one embodiment, for each of the dedupli-
cated data objects represented within the current access win-
dow, access information of the data object is determined
based on metadata of the data objects or metadata of the file
and stored as part of access information 408. In one embodi-
ment, access information 408 of a data object includes a
sequence access order of the data object that will be accessed
within the same file or a related file (e.g., a full backup file
with one or more incremental backup files). The sequence
access order may be represented by a list of sequence num-
bers representing logical time or logical order that the data
object will be accessed in the file. In a deduplicated storage
system, a file may be represented by many deduplicated data
objects. A deduplicated data object may occur in multiple
locations of the file and may be accessed multiple times when
the file is read. Based on access information 408, in one
embodiment, access predictor 114 can predict when a par-
ticular data object is to be accessed next time within the same
file. Access predictor 114 is to populate eviction candidate
data structure 409 to indicate the next access time (e.g.,
sequence number) of each unique or deduplicated data object.

In one embodiment, in predicting whether a data object is
likely accessed subsequently, access predictor 114 is to look
ahead and parse metadata of data objects within an access
window that covers a certain amount of data objects of the file
to be accessed, where the access window is a sliding access
window to read a certain amount of metadata of data objects
of a file into the memory at a time (since the file may be a
backup file in a large size). The logical access orders of the
data objects within the access window are obtained and
retained in memory 407 as part of access information 408.
When a data object is accessed and stored in cache 407, the
next access sequence order/number of the data object is
recorded in eviction candidate data structure 409 such as a
max heap data structure. The data structure 409 is used to
maintain a reference of a data object with largest or latest next
access order with respect to a current access order or time.
During a cache eviction process, a data object associated with
the largest or highest access order can be identified from data
structure 409 and evicted from cache 407. When a certain
amount (e.g., a predetermined threshold) metadata of data
objects of the current access window has been processed, the
process will slide onto a next access window (e.g., sliding the
window to subsequent data objects in the file). This approach
is referred to as an access-ordering lookahead approach. FIG.
4B is a block diagram illustrating an access-ordering looka-
head process according to one embodiment of the invention.
Referring to FIG. 4B, file 451 is requested for access, where
file 451 includes many data objects that will be accessed
sequentially. As described above, only a portion of metadata
of'data objects represented by access window 452 is loaded at
a given time in memory. Once metadata of data objects of
access window 452 is loaded in memory, the access predictor
such as access predictor 114 is to parse the metadata (e.g.,
fingerprints) of the data objects to determine access informa-
tion 408, which includes access sequence order of each
unique or deduplicated data object.

In this example, there are three deduplicated data objects
OBI1, OBJ2, and OBI3 within access window 452. For

25

30

35

40

45

65

12
OBI1, it will be accessed in the order of 1-2-5-7. OBJ2 will be
accessed in the order of 3-1 while OBJ3 will be accessed inthe
order of 4-6-N. In addition, a max heap data structure or
module 453 is utilized as an eviction candidate data structure
(data structure 409) to store the top eviction candidate that
will be evicted first during the cache eviction process.

A heap is a data structure created using a binary tree. It can
be seen as a binary tree, where all levels of the tree, except
possibly the last one (deepest) are fully filled. If the last level
of the tree is not complete, the nodes of that level are filled
from left to right. Each node is related to each of its children
according to a comparison predicate defined for the data
structure. Heaps with a mathematical “greater than or equal
t0” comparison function are referred to as max heaps; those
with a mathematical “less than or equal to” comparison func-
tion are referred to as Min Heaps. For the purpose of deter-
mining a top eviction candidate, a max heap is utilized as an
eviction candidate data structure according to one embodi-
ment. It will be appreciated that other types of data structures
and/or algorithms may also be utilized. It is also appreciated
that other types of files other than backup files, which are
likely accessed sequentially (e.g., media files such as audio,
video, or image files), may also be applied herein.

Referring back to FIG. 4B, it is assumed that the data
objects in backup file 451 are accessed sequentially. When
data objects of access window 452 are loaded in the memory,
access information 408 is generated based on the metadata
associated with the data objects and/or file 451. When a data
object is accessed, the next access sequence number (repre-
senting a logical access time slot) of the data object is deter-
mined based on its access information. The next access
sequence number, as well as certain identifying information
that identifies the corresponding data object, is then stored in
an entry of max heap 453 corresponding to the data object, for
example, via a max heap processing function or module (not
shown). A max heap function provides an interface to allow
other modules to insert (push) an entry into and remove (pop)
an entry from the data structure. When a new entry is inserted,
the max heap function will automatically store the entries
based on their property values, in a hierarchy in which all
paths from the root to a leaf are ordered from maximum to
minimum. When an entry is popped from the max heap data
structure, the entry with the maximum property value will be
removed. In this example, an entry with the maximum prop-
erty value represents a data object with the maximum
sequence number among all data objects. Such a data object
will be accessed in the farthest sequential order (e.g., will not
be accessed for a while).

For purpose of illustration, it is assumed that at this
moment, OBJ1 is being accessed at the sequence number of 5.
In response, the next sequence number of the same data
object, in this example sequence number 7, is determined
based on the access information 454 associated with OBJ1. In
addition, an entry associated with OBJ1 in max heap data
structure 453 is determined. The sequence number of 7 is then
inserted into the entry associated with OBJ1 of max heap data
structure 453. Note that max heap data structure 453 includes
many entries, each being associated with a unique or dedu-
plicated data object. In this example, max heap data structure
453 includes at least three entries, one for each of the dedu-
plicated OBJ1-OBJ3. In determining the entry of max heap
453 for a data object such as OBJ1, according to one embodi-
ment, metadata such as fingerprint 455 of OBJ1 is hashed
using hash function 456 (e.g., SHA-1 or MD5) to generate an
index value referencing to an entry associated with the data
object.

US 9,110,792 B1

13

During the cache space reclamation or eviction process, the
max heap function is invoked to pop the top entry from the
max heap data structure 453, which corresponds to a data
object with the maximum sequence number amongst the data
objects represented in max heap data structure 453. The maxi-
mum sequence number represents the farthest logical time
that the corresponding data object will next be accessed,
compared to the next access logical time of other data objects.
The corresponding data object is then identified based on the
metadata (and the associated sequence number) and the data
object can be evicted from data cache 410 to make room for
another data object.

FIG. 5is a flow diagram illustrating a method for accessing
data objects according to one embodiment of the invention.
Method 500 may be performed by system 400 of FIG. 4A.
Referring to FIG. 5, at block 501, data objects of a file (e.g.,
backup file) that are being sequentially accessed are cached in
a cache memory of a data processing system. At block 502,
processing logic determines the sequential access order of the
cached data objects based on metadata of the file. At block
503, in response to cache space reclamation, a data object,
whose next access is farthest amongst the cached data objects,
is evicted first based on the sequential access order.

FIG. 6A is a flow diagram illustrating a method for per-
forming access prediction according to one embodiment of
the invention. Method 600 may be performed by system 400
of FIG. 4A. For example, method 600 may be performed as
part of operations involved at block 303 of FIG. 3. Referring
to FIG. 6, at block 601, processing logic receives a signal
indicating that a data object of a file has been accessed, where
the data object is one of many data objects included in the file.
At block 602, access information is retrieved for the data
object. The access information may be compiled based on the
associated metadata when the data object is loaded into the
memory from storage. At block 603, a next access time or
sequence number of the data object is determined based on
the access information. At block 604, metadata (e.g., finger-
print) of the data object is hashed to obtain an index linked to
an entry of an eviction candidate data structure (e.g., max
heap data structure). Thereafter, at block 605, the next access
information is stored in the entry.

FIG. 6B is a flow diagram illustrating a method for cache
space reclamation according to one embodiment. Method
650 may be performed as part of operations involved at block
305 of FIG. 3. Referring to FIG. 6B, at block 651, a request to
reclaim space from the cache is received. At block 652, a top
eviction candidate is identified from an eviction candidate
data structure (e.g., popping a top entry from the max heap
data structure) to obtain an identifier of a data object. At block
653, the identified data object is evicted from the cache. At
block 654, it is determined whether enough cache space has
been reclaimed; if not, the above process is iteratively per-
formed.

The access-ordering lookahead approach described above
keeps track the access information such as the exact access
order of each unique or deduplicated data object over the span
of an access window, such that a data object that will be
accessed next time in the farthest order can be identified and
evicted first from the cache during a cache space reclamation
process. Typically, the access information is maintained in a
data structure such as a linked list data structure. Dependent
upon the size of the access window or number of deduplicated
data objects occurred in the access window, the memory or
other resources needed to accommodate such a data structure
for storing the access information can quickly become very
large. As there are many chunks per CR and many CRs per
container, storing the access information at the granularity of

30

35

40

45

55

14

individual chunks requires the most space, while storing it at
the granularity of containers requires the least space.

According to one embodiment, the memory required to
track the order of individual chunks is reduced by preprocess-
ing the access orders as described above. However, rather
than storing each individual access associated with each
object, as described above, in this embodiment the sequence
of'accesses is annotated on disk (or other mass storage system
including a flash-based storage system), such that each refer-
ence to an object contains an annotation indicating the access
order of the next reference to the object. That is, as shown in
FIG. 4C, access information 408 would contain OBJ1: 2,
OBJ2: 3, and OBI3: 4, etc. When OBJ1 is read at access order
2, for example, its state would reflect that its next access
would be at access order 5 and annotated information “OBJ1:
5” is recorded in access information 408. Similarly, when
OBJ2 is accessed at access order 3, the next access order of
the OBJ2 (e.g., OBJ2: i) is recorded in access information
408. The access information 408 may be organized on disk
based on the access order, allowing the access information for
multiple upcoming accesses to be prefetched in one 1/O.
Alternatively it may be maintained in another layer of the
storage hierarchy, including memory, solid-state disks, or
other media. Thus, each time an object is referenced, its next
access time is updated in the max heap, but an object that is
referenced many times need not have all its access order
sequences stored in memory simultaneously.

According to one embodiment, the file metadata 110-111 is
annotated at the time a file is created, reflecting for each object
the access order of the next time that object is accessed within
the file. According to one embodiment, the file metadata
110-111 is annotated subsequent to the time a file is created,
reflecting for each object the access order of the next time that
object is accessed within the file. Such an annotation process
may be performed via a background process or some other
management or maintenance processes, such as a garbage
collection process.

According to one embodiment, the use of access ordering
information to improve read performance is conditioned on
the estimated benefit from its use. Some read operations will
experience satisfactory performance without the need to use
knowledge of future access patterns. Referring to FIG. 6C, at
block 671 a prediction of read fragmentation is made based on
past history or the overall rate of fragmentation in the storage
system. If the predicted read fragmentation is below a thresh-
old, at block 672 the standard system LRU caching is per-
formed. If the predicted read fragmentation is at or above the
threshold, at block 673 the access optimized approach is
taken.

According to one embodiment, a bloom filter lookahead
(also referred to as a bloom filter chain lookahead) approach
is utilized to optimize the resources usage for the cache space
reclamation process. A bloom filter (BF) is a method for
efficiently representing existence. Bloom filters are utilized to
cluster chunks into intervals that are treated as equivalence
classes from the perspective of cache replacement. A data
object that is brought into the cache at time T need not be
cached if it will never be accessed again. Such a data object
might not be cached (for long) if its next access is far in the
future (e.g., it is not accessed for at least a while). But when
comparing many data objects that are all next accessed far in
the future, the order of those accesses is immaterial. The goal
is simply not to remove something from the cache if removing
something else would result in fewer misses.

According to one embodiment, an access window such as
an access window under the access-ordering lookahead
approach is divided into multiple (n) sub-windows (SWs),

US 9,110,792 B1

15

SW, to SW,,. Each sub-window is associated with a bloom
filter and an access list to store data objects that are likely
accessed during the timeframe of the respective sub-window.
In essence, this coalesces all accesses within a sub-window
into a single access. It also tracks the data objects efficiently
by storing their presence in a sub-window by setting just a few
bits (in the corresponding bloom filter). When a data object is
brought into the cache, the active sub-window is the first
sub-window in the chain, SW,, also referred to as a current
sub-window or current access window. The data object is
placed on a list associated with the sub-window when it will
next be referenced, SW,, found via a sequential search of the
BFs of future access sub-windows. It is placed on a garbage
list if it will not be accessed again in the foreseeable future
(e.g., within the span of the sub-windows). Eviction works in
reverse, searching the garbage list first and then sub-window
lists from the farthest in the future (SW,) backward in time to
SW,, looking for a non-empty access list. The first access list
containing at least one data object indicates something cur-
rently in the cache, which can be considered as a preferred
candidate to evict. Note that the term of “sub-window” and
“access window” are interchangeable terms dependent upon
the circumstances. An access window may be considered as a
sub-window of another larger access window.

FIG. 7A is a block diagram illustrating a backup storage
system using a bloom filter lookahead approach according to
one embodiment of the invention. System 700 may be imple-
mented as part of storage system 104 of FIG. 1. Referring to
FIG. 7A, similar to system 400 as shown in FIG. 4A, access
manager 115 and access predictor 114 are executed in
memory 402 by one or more processors Or processor cores
401. In addition, cache 116 is allocated from memory 402
specifically for managing access of data chunks 406, CRs
405, and containers 404 stored in storage unit 403. Cache 116
includes data cache 407, access information 408, and eviction
candidates 409. Data cache 407 is to cache data objects 410
loaded from storage unit 403, where any of data objects 410
may, in this example, represent data chunks 406, a CR of one
or more data chunks, a container of one or more CRs, or a
combination thereof of a deduplication storage system.

According to one embodiment, in response to a request to
retrieve a file, access manager 115 is to load a certain amount
of data objects of the file into memory 402 and to store the
data objects in data cache 407 as data objects 410 if data cache
407 has enough space. Note that the file may be a backup file
with a large size. Typically, access manager 115 is to read a
fixed number of metadata (e.g., fingerprints) of data objects at
a time that can be processed within an access window. Once
a certain amount of metadata of the data objects of an access
window has been processed, access manager 115 is to slide
the access window to read a next batch of metadata of data
objects of the file from storage 403.

In one embodiment, an access window herein represents
multiple access windows or sub-windows 701 in a chain or
sequence, which can be defined dynamically or statically. The
chain of access windows represents logical access time or
logical access order. Each of the access windows 701 is asso-
ciated with a bloom filter 702 and an access list 703 identi-
fying one or more data objects that will likely be accessed
within a logical time period associated with the respective
access window. The data objects of a file are accessed sequen-
tially according to a sequence order defined by the chain of
access windows.

According to one embodiment, when a data object is
accessed at a current or active access window (i.e., the first
overall access window in a chain of access windows that is
used to service a current request by access manager 115),

10

15

20

25

30

35

40

45

50

55

60

65

16

access information of the data object is determined based on
metadata (e.g., fingerprint) of the data objects or metadata of
the file and stored as part of access information 408. In one
embodiment, access information 408 of a data object includes
a sequence access order of the data object that will be
accessed within the same file. The sequence access order may
be represented by a list of sequence numbers representing
logical time or logical order that the data object will be
accessed in the file. In a deduplicated storage system, a file
may be represented by many deduplicated data objects. A
data object may occur in multiple locations of the file and may
be accessed multiple times when the file is accessed. Based on
access information 408, in one embodiment, access predictor
114 can predict when a particular data object will be accessed
next time within the same file and within the current or active
access window. Access predictor 114 is to populate eviction
candidate data structure 409 to indicate the next access time
(e.g., sequence number) of each unique or deduplicated data
object.

In addition, access predictor 114 performs an estimate to
approximately predict whether the data object is likely to be
accessed next time during a subsequent access window. Ifit is
determined that the data object is unlikely to be accessed in
any of the subsequent access windows, the data object is
indicated in a garbage list (not shown). The access predictor
114 walks through the access windows 701 in an ascending or
forward order, from the nearest access window to the farthest
access window with respect to the current or active access
window. The information concerning whether a particular
data object is likely to be accessed in a subsequent access
window is maintained. In one embodiment, for each access
window in the chain, metadata such as a fingerprint of a data
object that is currently accessed or just has been accessed is
input into a bloom filter 702 of'the access window. The output
from the bloom filter is utilized to indicate whether the data
object is likely to be accessed in a timeframe associated with
the corresponding access window, which may be stored in the
corresponding access list 703. In one embodiment, each
access window is associated with a separate bloom filter,
which may be created dynamically or statically.

In one embodiment, during the cache space reclamation
process, the access manager 115 first examines the garbage
list to identify any data object listed therein (e.g., data objects
that are not referenced across all the access windows) and to
evict at least one data object from the garbage list. If more
cache space is needed and if there is no data object listed in the
garbage list, the access manager 115 walks through the access
windows in a descending or backward order, from the farthest
access window to the nearest access window with respect to a
current access window (e.g., active access window), until the
enough cache space has been reclaimed. If none of the access
windows other than the current access window includes any
data object candidate for eviction, according to one embodi-
ment, the access-ordering lookahead approach, as described
above, is utilized to handle the cache eviction process within
the current access window based on eviction candidates 409.

FIG. 7B is a block diagram illustrating a bloom filter loo-
kahead process for cache management according to one
embodiment of the invention. Referring to FIG. 7B, a chunk
or block of file 751 that is read from storage into memory is
divided into multiple access windows 752-756 (e.g., sub-
windows of an access window representing the entire block of
file 751). The first overall access window 752 is referred to as
a current or active access window, where the data objects
within the current access window are used to service a request
foraccessing file 751. When all data objects referenced within
current access window 752 have been used to service the

US 9,110,792 B1

17

request, current access window 752 will be discarded and the
next access window (e.g., access window 753) will become
the current access window, and so on. Accesses within the
new current access window (e.g. access window 753) will
now be tracked sequentially using the access-ordering
method described previously.

According to one embodiment, each of access windows
752-756 is associated with a bloom filter (e.g., bloom filters
762-766) and an access list (e.g., access lists 772-776),
respectively. A bloom filter for each of access windows 752-
756 may be different and generated dynamically or statically.
An access list of an access window is to store information
identifying one or more data objects that are likely to be
accessed during a logical timeframe associated with the
respective access window. That is, if a data object is indicated
in an access list of a particular access window, a logical time
of a next access of the data object likely occurs within a
logical timeframe associated with that particular access win-
dow.

According to one embodiment, when a data object is being
accessed during current access window 752, the access-or-
dering lookahead method as described above is utilized to
determine the next logical access time of the data object, and
to populate an eviction candidate data structure (e.g., max
heap data structure) of the current access window if it is
determined that the data object will be accessed again within
current access window. If it is determined that the data object
will not be accessed within current access window 752, the
access predictor is to walk through subsequent access win-
dows 753-756, starting from the nearest access window 753
to the farthest access window 756 to estimate whether a next
access of the data object will likely occur in the respective
access window.

In one embodiment, for each of subsequent access win-
dows 753-756, metadata (e.g., fingerprint) of the data object
is fed into the corresponding bloom filter. The output of the
bloom filter is used to populate the corresponding access list
of'the respective access window. For example, in determining
whether the next access time of a data object having metadata
760 will likely occur in access window 753, metadata 760 is
fed into the associated bloom filter 763 and the object having
metadata 760 is used to populate the corresponding access list
773. If it is estimated via bloom filter 763 that the next access
time of the data object will not likely occur in access window
753, the estimation for the next access window in the chain, in
this example, access window 754 is performed, by applying
the corresponding bloom filter 764 to metadata 760, and so
on, until one of access windows 753-756 has been identified.
That is, since the process is to estimate the “next” access time
of a data object, once the first one of the access windows
752-756 in the chain is identified, the process stops even
though the data object may be accessed in a further access
window. In one embodiment, if the data object is unlikely to
be accessed in any of access windows 752-756, the data
object is populated in garbage list 761 to indicate that the data
object is never accessed or referenced again within the access
windows 752-756 (e.g., the data object will not likely be
accessed for the extent of the current lookahead window).
This estimation process is performed by walking through
access windows 752-756 in a forward order as indicated by
path 757.

During a cache space reclamation process, according to
one embodiment, the access manager is to identify and evict
eviction candidates by walking through garbage list 761 and
access windows 752-756 in a backward order (e.g., opposite
to the estimation process), starting from garbage list 761 as
indicated by path 758. According to one embodiment, cache

10

20

25

30

35

40

45

50

55

60

65

18

space reclamation process starts by examining garbage list
761 to determine whether there is any eviction candidate
listed therein. If it does, the data object(s) associated with the
eviction candidate(s) listed in the garbage list will be evicted
first. If garbage list 761 does not include any candidates and
more cache space is needed, the processing logic examines
access lists of access windows 753-756 in a backward order,
starting from the farthest access window 756, to identify any
eviction candidate for eviction, until enough cache space has
been reclaimed. At a point at which none of access windows
756-753 nor the garbage list includes any eviction candidate
and more cache space is needed, the processing logic per-
forms the cache eviction process within current access win-
dow 752 using a method similar to the access-ordering loo-
kahead approach as described above.

FIG. 8 is a flow diagram illustrating a method for accessing
data objects according to one embodiment of the invention.
Method 800 may be performed by system 700 as shown in
FIGS. 7A and 7B, which may be performed by processing
logic in software, hardware, or a combination thereof. Refer-
ring to FIG. 8, at block 801, data objects of a file are cached in
a cache memory of a storage system, where the data objects
will be accessed sequentially via a chain of access windows.
At block 802, it is estimated in which of the access windows
a next access of a data object of the file likely occurs, using a
bloom filter associated with each access window. At block
803, in response to a request for cache space reclamation, a
data object that will likely be accessed in a farthest access
window from a current access window in the chain is evicted
from the cache memory based on the estimation.

FIG. 9A is a flow diagram illustrating a bloom filter loo-
kahead method according to one embodiment of the inven-
tion. Method 900 may be performed by system 700 as shown
in FIGS. 7A and 7B, which may be performed by processing
logic in software, hardware, or a combination thereof. Refer-
ring to FIG. 9A, in response to a request for accessing a data
object of a file (e.g., backup file) within a current access
window, at block 901, processing logic determines whether
the data object will be accessed again within the current
access window, using the access-ordering lookahead method
as described above. The current access window is the first
overall access window of multiple access windows in a chain
or sequence. If the data object will likely be accessed again
within the current access window, the next access time or
order of the data object is populated in the eviction candidate
data structure and the process ends.

If it is determined that the data object will likely not be
accessed again in the current access window, at block 902, for
a subsequent access window in the chain, processing logic
invokes a bloom filter lookahead method to apply the corre-
sponding bloom filter on metadata (e.g., fingerprint) of the
data object to estimate the likelihood that the data object will
be accessed during a logical timeframe associated with the
respective access window. At block 903, if it is estimated that
the data object is likely to be accessed during a logical access
timeframe of the access window, at block 906, an access list
of the corresponding access window is populated and the
process ends. If it is estimated that the data object is unlikely
to be accessed within the respective access window, at block
904, it is determined whether there are more access windows
in the chain. If so, a next access window in the chain is
identified and the above process is iteratively performed.
Otherwise, at block 905, the data object is populated in a
garbage list to indicate that the data object is unlikely to be
accessed during any of the access windows in the chain.

FIG. 9B is a flow diagram illustrating a bloom filter looka-
head method according to another embodiment of the inven-

US 9,110,792 B1

19

tion. Method 950 may be performed by system 700 as shown
in FIGS. 7A and 7B, which may be performed by processing
logic in software, hardware, or a combination thereof. Refer-
ring to FIG. 9B, at block 951, in response to a request to
reclaim cache space, processing logic evicts one or more data
object list in the garbage list. At block 952, it is determined
whether there is enough cache space. If so, the process ends;
otherwise, at block 953, data objects listed in the access list of
the farthest access window will be evicted from the cache. At
block 954, it is determined whether there is enough cache
space. If so, the process ends; otherwise, at block 955, it is
determined whether there are more access windows to be
processed. If so, a next farthest access window (with respect
to the current access window) is identified at block 957 and
the above process is iteratively performed. If there is no more
access window to be processed, at block 956, the eviction
candidates of the current access window produced by the
access-ordering lookahead method are evicted from the
cache.

FIG. 10 is a block diagram illustrating a chunk storage
engine according to one embodiment of the invention. For
example, deduplication storage engine 1000 may be imple-
mented as part of a deduplication storage system as described
above, such as deduplication storage engine 107 of FIG. 1.
Referring to FIG. 10, in one embodiment, deduplication stor-
age engine 1000 includes file service interface 1002, seg-
menter 1004, duplicate eliminator 1006, file system control
1008, and storage unit interface 1012. Deduplication storage
engine 1000 receives a file or files (or data item(s)) via file
service interface 1002, which may be part of a file system
namespace of a file system associated with the deduplication
storage engine 1000. The file system namespace refers to the
way files are identified and organized in the system. An
example is to organize the files hierarchically into directories
or folders. File service interface 1012 supports a variety of
protocols, including a network file system (NFS), a common
Internet file system (CIFS), and a virtual tape library interface
(VTL), etc.

The file(s) is/are processed by segmenter 1004 and file
system control 1008. Segmenter 1004 breaks the file(s) into
variable-length chunks based on a variety of rules or consid-
erations. For example, the file(s) may be broken into chunks
by identifying chunk boundaries using a content-based tech-
nique (e.g., a function is calculated at various locations of a
file, when the function is equal to a value or when the value is
a minimum, a maximum, or other value relative to other
function values calculated for the file), a non-content-based
technique (e.g., based on size of the chunk), or any other
appropriate technique. In one embodiment, a chunk is
restricted to a minimum and/or maximum length, to a mini-
mum or maximum number of chunks per file, or any other
appropriate limitation.

In one embodiment, file system control 1008 processes
information to indicate the chunk(s) association with a file. In
some embodiments, a list of fingerprints is used to indicate
chunk(s) associated with a file. File system control 1008
passes chunk association information (e.g., representative
data such as a fingerprint) to an index (not shown). The index
is used to locate stored chunks in storage units 1010 via
storage unit interface 1012. Duplicate eliminator 1006 iden-
tifies whether a newly received chunk has already been stored
in storage units 1010. In the event that a chunk has already
been stored in storage unit(s), a reference to the previously
stored chunk is stored, for example, in a chunk tree associated
with the file, instead of storing the newly received chunk. A
chunk tree of a file may include one or more nodes and each
node represents or references one of the deduplicated chunks

40

45

50

55

20
stored in storage units 1010 that make up the file. Chunks are
then packed by a container manager (not shown) into one or
more storage containers stored in storage units 1010. The
deduplicated chunks may be further compressed using a
variation of compression algorithms, such as a Lempel-Ziv
algorithm before being stored.

When a file is to be retrieved, file service interface 1002 is
configured to communicate with file system control 1008 to
identify appropriate chunks stored in storage units 1010 via
storage unit interface 1012. Storage unit interface 1012 may
be implemented as part of a container manager. File system
control 1008 communicates with an index (not shown) to
locate appropriate chunks stored in storage units via storage
unitinterface 1012. Appropriate chunks are retrieved from the
associated containers via the container manager and are used
to construct the requested file. The file is provided via inter-
face 1002 in response to the request. In one embodiment, file
system control 1008 utilizes a tree (e.g., a chunk tree) of
content-based identifiers (e.g., fingerprints) to associate a file
with data chunks and their locations in storage unit(s). In the
event that a chunk associated with a given file or file changes,
the content-based identifiers will change and the changes will
ripple from the bottom to the top of the tree associated with
the file efficiently since the appropriate content-based identi-
fiers are easily identified using the tree structure.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

Embodiments of the invention also relate to an apparatus
for performing the operations herein. Such a computer pro-
gram is stored in a non-transitory computer readable medium.
A machine-readable medium includes any mechanism for
storing information in a form readable by a machine (e.g., a
computer). For example, a machine-readable (e.g., computer-
readable) medium includes a machine (e.g., a computer) read-
able storage medium (e.g., read only memory (“ROM”), ran-
dom access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory devices).

The processes or methods depicted in the preceding figures
may be performed by processing logic that comprises hard-
ware (e.g. circuitry, dedicated logic, etc.), software (e.g.,
embodied on a non-transitory computer readable medium), or
acombination of both. Although the processes or methods are
described above in terms of some sequential operations, it
should be appreciated that some of the operations described

US 9,110,792 B1

21

may be performed in a different order. Moreover, some opera-
tions may be performed in parallel rather than sequentially.

Embodiments of the present invention are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of embodiments of
the invention as described herein.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exemplary
embodiments thereof. It will be evident that various modifi-
cations may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
following claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense.

What is claimed is:

1. A computer-implemented method for cache manage-
ment of a storage system, the method comprising:

caching a plurality of data objects of a file in a cache

memory of a storage system, the plurality of the data
objects of the file to be accessed sequentially via a plu-
rality of access windows in a chain;

estimating whether a next access of a data object of the file

likely occurs in which of the access windows using
respective bloom filters associated with the access win-
dows; and

in response to a request for cache space reclamation, evict-

ing a data object from the cache memory that will likely
be accessed in a farthest access window in the chain
from a current access window based on the estimation,
wherein evicting a data object from the cache memory
based on the estimation comprises evicting any data
objectidentified ina garbage list from the cache memory
before evicting any data object identified from the access
windows, wherein the garbage list stores one or more
data objects that are not referenced within any of the
access windows.

2. The method of claim 1, further comprising:

for given one of the access windows in the chain, examin-

ing an access list associated with the access window to
identify a second data object that is likely accessed
within the access window; and

evicting the second data object from the cache memory if

the second data object is listed in the access list of the
access window.

3. The method of claim 2, further comprising iteratively
performing examining the access list for each of the access
windows, starting from a farthest access window to a nearest
access window in the chain, until a second access window is
found in the chain whose access list contains at least one data
object.

4. The method of claim 3, further comprising identifying
and evicting a data object from the current access window
based on access ordering of data objects associated with the
current access window, if the second access window cannot
be found.

5. The method of claim 1, wherein the plurality of data
objects are deduplicated data objects that are stored in a
storage device of the storage system.

6. The method of claim 1, wherein estimating whether a
next access of a data object of the file likely occurs in which
of the access windows comprises:

for given one of the access windows in the chain, applying

a corresponding bloom filter on metadata of the data
object to generate an output; and

15

20

25

35

40

45

50

55

22

indicating in an access list associated with the access win-
dow based on the output to indicate whether the data
object is likely accessed within the access window.

7. The method of claim 6, further comprising iteratively
performing applying the corresponding bloom filter and indi-
cating in the associated access list for each of the access
windows, starting from a nearest access window to a farthest
access window in the chain, until a first access window is
found in the chain whose output from its corresponding
bloom filter indicates that the data object is likely accessed
within the first access window.

8. The method of claim 7, further comprising indicating in
a garbage list that the data object is not referenced, if none of
the access windows in the chain has been found that the data
object is likely accessed.

9. A non-transitory computer-readable storage medium
having instructions stored therein, which when executed by a
processor, cause the processor to perform a method for cache
management of a storage system, the method comprising:

caching a plurality of data objects of a file in a cache

memory of a storage system, the plurality of the data
objects of the file to be accessed sequentially via a plu-
rality of access windows in a chain;

estimating whether a next access of a data object of the file

likely occurs in which of the access windows using
respective bloom filters associated with the access win-
dows; and

in response to a request for cache space reclamation, evict-

ing a data object from the cache memory that will likely
be accessed in a farthest access window in the chain
from a current access window based on the estimation,
wherein evicting a data object from the cache memory
based on the estimation comprises evicting any data
objectidentified in a garbage list from the cache memory
before evicting any data object identified from the access
windows, wherein the garbage list stores one or more
data objects that are not referenced within any of the
access windows.

10. The non-transitory computer-readable storage medium
of claim 9, wherein the operations further comprise:

for given one of the access windows in the chain, examin-

ing an access list associated with the access window to
identify a second data object that is likely accessed
within the access window; and

evicting the second data object from the cache memory if

the second data object is listed in the access list of the
access window.

11. The non-transitory computer-readable storage medium
of claim 10, wherein the operations further comprise itera-
tively performing examining the access list for each of the
access windows, starting from a farthest access window to a
nearest access window in the chain, until a second access
window is found in the chain whose access list contains at
least one data object.

12. The non-transitory computer-readable storage medium
of claim 11, wherein the operations further comprise identi-
fying and evicting a data object from the current access win-
dow based on access ordering of data objects associated with
the current access window, if the second access window can-
not be found.

13. The non-transitory computer-readable storage medium
of claim 9, wherein the plurality of data objects are dedupli-
cated data objects that are stored in a storage device of the
storage system.

US 9,110,792 B1

23

14. The non-transitory computer-readable storage medium
of'claim 9, wherein estimating whether a next access of a data
object of the file likely occurs in which of the access windows
comprises:

for given one of the access windows in the chain, applying

a corresponding bloom filter on metadata of the data
object to generate an output; and

indicating in an access list associated with the access win-

dow based on the output to indicate whether the data
object is likely accessed within the access window.
15. The non-transitory computer-readable storage medium
of claim 14, wherein the operations further comprise itera-
tively performing applying the corresponding bloom filter
and indicating in the associated access list for each of the
access windows, starting from a nearest access window to a
farthest access window in the chain, until a first access win-
dow is found in the chain whose output from its correspond-
ing bloom filter indicates that the data object is likely
accessed within the first access window.
16. The non-transitory computer-readable storage medium
of claim 15, wherein the operations further comprise indicat-
ing in a garbage list that the data object is not referenced, if
none of the access windows in the chain has been found that
the data object is likely accessed.
17. A storage system, comprising:
acache memory to cache a plurality of data objects of a file
in a cache memory of a storage system, the plurality of
the data objects ofthe file to be accessed sequentially via
a plurality of access windows in a chain;

an access predictor to estimate whether a next access of a
data object of the file likely occurs in which of the access
windows using respective bloom filters associated with
the access windows; and

an access manager, in response to a request for cache space

reclamation, to evict a data object from the cache
memory that will likely be accessed in a farthest access
window in the chain from a current access window based
on the estimation, wherein the access manager evicts
any data object identified in a garbage list from the cache
memory before evicting any data object identified from
the access windows, wherein the garbage list stores one
ormore data objects that are not referenced within any of
the access windows.

35

40

24

18. The system of claim 17, wherein the access manager is
to

for given one of the access windows in the chain, examine

an access list associated with the access window to iden-
tify a second data object that is likely accessed within the
access window; and

evict the second data object from the cache memory if the

second data object is listed in the access list of the access
window.

19. The system of claim 18, wherein the access manager
iteratively examines the access list for each of the access
windows, starting from a farthest access window to a nearest
access window in the chain, until a second access window is
found in the chain whose access list contains at least one data
object.

20. The system of claim 19, wherein the access manager is
to identify and evict a data object from the current access
window based on access ordering of data objects associated
with the current access window, if the second access window
cannot be found.

21. The system of claim 17, wherein the plurality of data
objects are deduplicated data objects that are stored in a
storage device of the storage system.

22. The system of claim 17, wherein the access predictor is
configured to

for given one of the access windows in the chain, apply a

corresponding bloom filter on metadata of the data
object to generate an output, and

indicate in an access list associated with the access window

based on the output to indicate whether the data object is
likely accessed within the access window.

23. The system of claim 22, wherein the access predictor
iteratively applies the corresponding bloom filter and indicat-
ing in the associated access list for each of the access win-
dows, starting from a nearest access window to a farthest
access window in the chain, until a first access window is
found in the chain whose output from its corresponding
bloom filter indicates that the data object is likely accessed
within the first access window.

24. The system of claim 23, wherein the access predictor
indicates in a garbage list that the data object is not refer-
enced, if none of the access windows in the chain has been
found that the data object is likely accessed.

#* #* #* #* #*

